Still Another Idea from CS61A

e The problem is that we are recomputing intermediate results many
times.

e Solution: memoize the intermediate results. Here, we pass in an
N x N array (N = V.length) of memoized results, initialized to -1.

int bestSum (int[] V, int left, int right, int total, int[][] memo) {
if (left > right)
return O;
else if (memo[left] [right] == -1) {
int L = total - bestSum (V, left+l, right, total-V[left], memo);
int R = total - bestSum (V, left, right-1, total-V[right], memo);
memo [left] [right] = Math.max (L, R);
}
return memo [left] [right];
+
+

e Now the number of recursive calls to bestSum must be O(N?), for
N = the length of V/, an enormous improvement from ©(2")!

Last modified: Fri Nov 22 14:52:24 2013 CS61B: Lecture #35 4



