
Minimum Spanning Trees by Prim’s Algorithm

• Idea is to grow a tree starting from an arbitrary node.

• At each step, add the shortest edge connecting some node already
in the tree to one that isn’t yet.

• Why must this work?

PriorityQueue fringe;

For each node v { v.dist() = ∞; v.parent() = null; }

Choose an arbitrary starting node, s;

s.dist() = 0;

fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;

while (! fringe.isEmpty()) {

Vertex v = fringe.removeFirst ();

For each edge (v,w) {

if (w ∈ fringe && weight(v,w) < w.dist())

{ w.dist() = weight (v, w); w.parent() = v; }

}

}

A|0 B|∞

C|∞

D|∞ E|∞ F|∞

G|∞ H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2

1

1

Last modified: Wed Nov 20 14:10:09 2013 CS61B: Lecture #34 7

Minimum Spanning Trees by Kruskal’s Algorithm

• Observation: the shortest edge in a graph can always be part of a
minimum spanning tree.

• In fact, if we have a bunch of subtrees of a MST, then the shortest
edge that connects two of them can be part of a MST, combining
the two subtrees into a bigger one.

• So,. . .

Create one (trivial) subtree for each node in the graph;
MST = {};

for each edge (v,w), in increasing order of weight {

if ((v,w) connects two different subtrees) {

Add (v,w) to MST;

Combine the two subtrees into one;
}

}

Last modified: Wed Nov 20 14:10:09 2013 CS61B: Lecture #34 8

Recursive Depth-First Traversal

• Previously, we saw an iterative way to do depth-first traversal of a
graph from a particular node.

• We are often interested in traversing all nodes of a graph, so we
can repeat the procedure as long as there are unmarked nodes.

• Recursive solution is also simple:

void traverse (Graph G) {

for (v ∈ nodes of G) {

traverse (G, v);

}

void traverse (Graph G, Node v) {

if (v is unmarked) {

mark (v);

visit v;

for (Edge (v, w) ∈ G)

traverse (G, w);

}

}

Last modified: Wed Nov 20 14:10:09 2013 CS61B: Lecture #34 9

Another Take on Topological Sort

• Observation: if we do a depth-first traversal on a DAG whose edges
are reversed, and execute the recursive traverse procedure, we
finish executing traverse(G,v) in proper topologically sorted order.

void topologicalSort (Graph G) {

for (v ∈ nodes of G) {

traverse (G, v);

}

void traverse (Graph G, Node v) {

if (v is unmarked) {

mark (v);

for (Edge (w, v) ∈ G)

traverse (G, w);

add v to the result list;

}

}

Last modified: Wed Nov 20 14:10:09 2013 CS61B: Lecture #34 10

