
General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL

* that avoids all squares that have been hit already and

* that ends up one square away from ENDROW, ENDCOL. B[i][j] is

* true iff row i and column j have been hit on PATH so far.

* Returns true if it succeeds, else false (with no change to PATH).

* Call initially with PATH containing the starting square, and

* the starting square (only) marked in B. */

boolean findPath (boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

if (path.size () == 64) return isKnightMove (row, col, endRow, endCol);

for (r, c = all possible moves from (row, col)) {

if (! b[r][c]) {

b[r][c] = true; // Mark the square

path.add (new Move (r, c));

if (findPath (b, r, c, endRow, endCol, path)) return true;

b[r][c] = false; // Backtrack out of the move.

path.remove (path.size ()-1);

}

}

return false;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 4

Some Pseudocode for Searching

/** A legal move for WHO that either has an estimated value >= CUTOFF

* or that has the best estimated value for player WHO, starting from

* position START, and looking up to DEPTH moves ahead. */

Move findBestMove (Player who, Position start, int depth, double cutoff)

{

if (start is a won position for who) return WON_GAME; /* Value ∞ */

else if (start is a lost position for who) return LOST_GAME; /* Value −∞ */

else if (depth == 0) return guessBestMove (who, start, cutoff);

Move bestSoFar = REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Move response = findBestMove (who.opponent (), next,

depth-1, -bestSoFar.value ());

if (-response.value () > bestSoFar.value ()) {

Set M’s value to -response.value (); // Value for who = - Value for opponent
bestSoFar = M;

if (M.value () >= cutoff) break;

}

}

return bestSoFar;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 9

Static Evaluation

• This leaves static evaluation, which looks just at the next possible
move:

Move guessBestMove (Player who, Position start, double cutoff)

{

Move bestSoFar;

bestSoFar = Move.REALLY_BAD_MOVE;

for (each legal move, M, for who from position start) {

Position next = start.makeMove (M);

Set M’s value to heuristic guess of value to who of next;

if (M.value () > bestSoFar.value ()) {

bestSoFar = M;

if (M.value () >= cutoff)

break;

}

}

return bestSoFar;

}

Last modified: Fri Oct 7 14:43:18 2011 CS61B: Lecture #23 10

