
Math 54 Cheat Sheet

Vector spaces

Subspace: If u and v are in W , then u+ v are in W , and cu is in W
Nul(A): Solutions of Ax = 0. Row-reduce A.
Row(A): Space spanned by the rows of A: Row-reduce A and choose
the rows that contain the pivots.
Col(A): Space spanned by columns of A: Row-reduce A and choose the
columns of A that contain the pivots
Rank(A): = Dim(Col(A)) = number of pivots
Rank-Nullity theorem: Rank(A) + dim(Nul(A)) = n, where A is
m× n
Linear transformation: T (u+ v) = T (u) + T (v), T (cu) = cT (u),
where c is a number.
T is one-to-one if T (u) = 0⇒ u = 0
T is onto if Col(T ) = Rm.
Linearly independence:
a1v1 + a2v2 + · · ·+ anvn = 0⇒ a1 = a2 = · · · = an = 0.
To show lin. ind, form the matrix of the vectors, and show that
Nul(A) = {0}
Linear dependence: a1v1 + a2v2 + · · ·+ anvn = 0 for
a1, a2, · · · , an, not all zero.
Span: Set of linear combinations of v1, · · ·vn

Basis B for V : A linearly independent set such that Span (B) = V
To show sthg is a basis, show it is linearly independent and spans.
To find a basis from a collection of vectors, form the matrix A of the
vectors, and find Col(A).
To find a basis for a vector space, take any element of that v.s. and
express it as a linear combination of ’simpler’ vectors. Then show those
vectors form a basis.
Dimension: Number of elements in a basis.
To find dim, find a basis and find num. elts.
Theorem: If V has a basis of vectors, then every basis of V must have n
vectors.
Basis theorem: If V is an n−dim v.s., then any lin. ind. set with n
elements is a basis, and any set of n elts. which spans V is a basis.
Matrix of a lin. transf T with respect to bases B and C: For every vector
v in B, evaluate T (v), and express T (v) as a linear combination of
vectors in C. Put the coefficients in a column vector, and then form the
matrix of the column vectors you found!
Coordinates: To find [x]B , express x in terms of the vectors in B.
x = PB [x]B , where PB is the matrix whole columns are the vectors in
B.
Invertible matrix theorem: If A is invertible, then: A is row-equivalent
to I , A has n pivots, T (x) = Ax is one-to-one and onto, Ax = b has a
unique solution for every b, AT is invertible, det(A) 6= 0, the columns
of A form a basis for Rn, Nul(A) = {0}, Rank(A) = n[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
[
A | I

]
→
[
I | A−1

]
Change of basis: [x]C = PC←B [x]B (think of C as the new, cool basis)
[C | B]→ [I | PC←B]
PC←B is the matrix whose columns are [b]C , where b is in B

Diagonalization
Diagonalizability: A is diagonalizable if A = PDP−1 for some
diagonal D and invertible P .
A and B are similar if A = PBP−1 for P invertible
Theorem: A is diagonalizable⇔ A has n linearly independent
eigenvectors
Theorem: IF A has n distinct eigenvalues, THEN A is diagonalizable,
but the opposite is not always true!!!!
Notes: A can be diagonalizable even if it’s not invertible (Ex:

A =

[
0 0
0 0

]
). Not all matrices are diagonalizable (Ex:

[
1 1
0 1

]
)

Consequence: A = PDP−1 ⇒ An = PDnP−1

How to diagonalize: To find the eigenvalues, calculate det(A− λI), and
find the roots of that.
To find the eigenvectors, for each λ find a basis for Nul(A− λI),
which you do by row-reducing
Rational roots theorem: If p(λ) = 0 has a rational root r = a

b
, then a

divides the constant term of p, and b divides the leading coefficient.
Use this to guess zeros of p. Once you have a zero that works, use long
division! Then A = PDP−1, where D= diagonal matrix of
eigenvalues, P = matrix of eigenvectors
Complex eigenvalues If λ = a+ bi, and v is an eigenvector, then

A = PCP−1, where P =
[
Re(v) Im(v)

]
, C =

[
a b
−b a

]
C is a scaling of

√
det(A) followed by a rotation by θ, where:

1√
det(A)

C =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
Orthogonality
u,v orthogonal if u · v = 0.
‖u‖ =

√
u · u

{u1 · · ·un} is orthogonal if ui · uj = 0 if i 6= j, orthonormal if
ui · ui = 1
W⊥: Set of v which are orthogonal to every w in W .
If {u1 · · ·un} is an orthogonal basis, then:
y = c1u1 + · · · cnun ⇒ cj =

y·uj

uj·uj

Orthogonal matrix Q has orthonormal columns!
Consequence:QTQ = I , QQT = Orthogonal projection on Col(Q).
‖Qx‖ = ‖x‖
(Qx) · (Qy) = x · y
Orthogonal projection: If {u1 · · ·uk} is a basis for W , then orthogonal

projection of y on W is: ŷ =
(

y·u1
u1u1

)
u1 + · · ·+

(
y·u1
ukuk

)
uk

y − ŷ is orthogonal to ŷ, shortest distance btw y and W is ‖y − ŷ‖
Gram-Schmidt: Start with B = {u1, · · ·un}. Let:
v1 = u1

v2 = u2 −
(

u2·v1
v1·v1

)
v1

v3 = u3 −
(

u3·v1
v1·v1

)
v1 −

(
u3·v2
v2·v2

)
v2

Then {v1 · · ·vn} is an orthogonal basis for Span(B), and if
wi =

vi
‖vi‖

, then {w1 · · ·wn} is an orthonormal basis for Span(B).
QR-factorization: To find Q, apply G-S to columns of A. Then
R = QTA
Least-squares: To solve Ax = b in the least squares-way, solve
ATAx = ATb.

Least squares solution makes ‖Ax− b‖ smallest.
x̂ = R−1QTb, where A = QR.
Inner product spaces f · g =

∫ b
a f(t)g(t)dt. G-S applies with this inner

product as well.
Cauchy-Schwarz: |u · v| ≤ ‖u‖ ‖v‖
Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

Symmetric matrices (A = AT )
Has n real eigenvalues, always diagonalizable, orthogonally
diagonalizable (A = PDPT , P is an orthogonal matrix, equivalent to
symmetry!).
Theorem: If A is symmetric, then any two eigenvectors from different
eigenspaces are orthogonal.
How to orthogonally diagonalize: First diagonalize, then apply G-S on
each eigenspace and normalize. Then P = matrix of (orthonormal)
eigenvectors, D = matrix of eigenvalues.
Quadratic forms: To find the matrix, put the x2i -coefficients on the
diagonal, and evenly distribute the other terms. For example, if the
x1x2−term is 6, then the (1, 2)th and (2, 1)th entry of A is 3.
Then orthogonally diagonalize A = PDPT .
Then let y = PTx, then the quadratic form becomes
λ1y21 + · · ·+ λny2n, where λi are the eigenvalues.
Spectral decomposition: λ1u1u1

T + λ2u2u2
T + · · ·+ λnunun

T

Second-order and Higher-order differential
equations
Homogeneous solutions: Auxiliary equation: Replace equation by
polynomial, so y′′′ becomes r3 etc. Then find the zeros (use the rational
roots theorem and long division, see the ‘Diagonalization-section).
’Simple zeros’ give you ert, Repeated zeros (multiplicity m) give you
Aert +Btert + · · ·Ztm−1ert, Complex zeros r = a+ bi give you
Aeat cos(bt) +Beat sin(bt).
Undetermined coefficients: y(t) = y0(t) + yp(t), where y0 solves the
hom. eqn. (equation = 0), and yp is a particular solution. To find yp:
If the inhom. term is Ctmert, then:
yp = ts(Amtm · · ·+A1t+ 1)ert, where if r is a root of aux with
multiplicity m, then s = m, and if r is not a root, then s = 0.
If the inhom term is Ctmeat sin(βt), then: yp = ts(Amtm · · ·+
A1t+ 1)eat cos(βt) + ts(Bmtm · · ·+B1t+ 1)ert sin(βt), where
s = m, if a+ bi is also a root of aux with multiplicity m (s = 0 if not).
cos always goes with sin and vice-versa, also, you have to look at
a+ bi as one entity.
Variation of parameters: First, make sure the leading coefficient
(usually the coeff. of y′′) is = 1.. Then y = y0 + yp as above. Now
suppose yp(t) = v1(t)y1(t) + v2(t)y2(t), where y1 and y2 are your

hom. solutions. Then
[
y1 y2
y′1 y′2

] [
v′1
v′2

]
=

[
0
f(t)

]
. Invert the matrix and

solve for v′1 and v′2, and integrate to get v1 and v2, and finally use:
yp(t) = v1(t)y1(t) + v2(t)y2(t).

Useful formulas:
[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
∫
sec(t) = ln |sec(t) + tan(t)|,

∫
tan(t) = ln |sec(t)|,∫

tan2(t) = tan(x)− x,
∫
ln(t) = t ln(t)− t

Linear independence: f, g, h are linearly independent if
af(t) + bg(t) + ch(t) = 0⇒ a = b = c = 0. To show linear



dependence, do it directly. To show linear independence, form the

Wronskian: W̃ (t) =

[
f(t) g(t)
f ′(t) g′(t)

]
(for 2 functions),

W̃ (t) =

 f(t) g(t) h(t)
f ′(t) g′(t) h′(t)
f ′′(t) g′′(t) h′′(t)

 (for 3 functions). Then pick a

point t0 where det(W̃ (t0)) is easy to evaluate. If det 6= 0, then f, g, h
are linearly independent! Try to look for simplifications before you
differentiate.
Fundamental solution set: If f, g, h are solutions and linearly
independent.
Largest interval of existence: First make sure the leading coefficient
equals to 1. Then look at the domain of each term. For each domain,
consider the part of the interval which contains the initial condition.
Finally, intersect the intervals and change any brackets to parentheses.
Harmonic oscillator: my′′ + by′ + ky = 0 (m = inertia, b = damping,
k = stiffness)

Systems of differential equations
To solve x′ = Ax: x(t) = Aeλ1tv1 +Beλ2tv2 + eλ3tv3 (λi are
your eigenvalues, vi are your eigenvectors)
Fundamental matrix: Matrix whose columns are the solutions, without
the constants (the columns are solutions and linearly independent)
Complex eigenvalues If λ = α+ iβ, and v = a+ ib. Then:
x(t) = A

(
eαt cos(βt)a− eαt sin(βt)b

)
+

B
(
eαt sin(βt)a+ eαt cos(βt)b

)
Notes: You only need to consider one complex eigenvalue. For real
eigenvalues, use the formula above. Also, 1

a+bi
= a−bi

a2+b2

Generalized eigenvectors If you only find one eigenvector v (even
though there are supposed to be 2), then solve the following equation for
u: (A− λI)(u) = v (one solution is enough).
Then: x(t) = Aeλtv +B

(
teλtv + eλtu

)
Undetermined coefficients First find hom. solution. Then for xp, just
like regular undetermined coefficients, except that instead of guessing

xp(t) = aet + b cos(t), you guess aet + b cos(t), where a =

[
a1
a2

]
is

a vector. Then plug into x′ = Ax+ f and solve for a etc.
Variation of parameters First hom. solution xh(t) = Ax1(t)+Bx2(t).
Then sps xp(t) = v1(t)x1(t) + v2(t)x2(t), then solve

W̃ (t)

[
v′1
v′2

]
= f , where W̃ (t) =

[
x1(t) | x2(t)

]
. Multiply both

sides by
(
W̃ (t)

)−1
, integrate and solve for v1(t), v2(t), and plug back

into xp. Finally, x = xh + xp

Matrix exponential eAt =
∑∞
n=0

Antn

n!
. To calculate eAt, either

diagonalize: A = PDP−1 ⇒ eAt = PeDtP−1, where eDt is a
diagonal matrix with diag. entries eλit. Or if A only has one eigenvalue
λ with multiplicity m, use eAt = eλt

∑m−1
n=0

(A−λI)ntn
n!

. Solution of
x′ = Ax is then x(t) = eAtc, where c is a constant vector.

Coupled mass-spring system
Case N = 2

Equation: x′′ = Ax, A =

[
−2 1
1 −2

]
Proper frequencies: Eigenvalues of A are: λ = −1,−3, then proper

frequencies ±i,±
√
3i (± square roots of eigenvalues)

Proper modes: v1 =

[
sin
(
π
3

)
sin
(
2π
3

)] =

[√
3
2√
3
2

]
,

v2 =

[
sin
(
2π
3

)
sin
(
4π
3

)] =

[ √
3

2

−
√
3

2

]
Case N = 3

Equation: x′′ = Ax, A =

−2 1 0
1 −2 1
0 1 −2


Proper frequencies: Eigenvalues of A: λ = −2,−2−

√
2,−2 +

√
2,

then proper frequencies ±
√
2i,±

(√
2 +
√
2
)
i,±

(√
2−
√
2
)
i

Proper modes: v1 =

 sin
(
π
4

)
sin
(
2π
4

)
sin
(
3π
4

)
 =


√
2
2
1√
2
2

 ,v2 =

sin
(
2π
4

)
sin
(
4π
4

)
sin
(
6π
4

)
 =

 1
0
−1

 ,v3 =

sin
(
3π
4

)
sin
(
6π
4

)
sin
(
9π
4

)
 =


√
2

2
−1√

2
2


General case (just in case!)

Equation: x′′ = Ax, A =



−2 1 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 0 · · ·
...

...
...

...
...

...
0 0 · · · 1 −2 1
0 0 0 0 1 −2


Proper frequencies: ±2i sin

(
kπ

2(N+1)

)
, k = 1, 2, · · ·N

Proper modes: vk =


sin
(
kπ
N+1

)
sin
(

2kπ
N+1

)
...

sin
(
Nkπ
N+1

)


Partial differential equations
Full Fourier series: f defined on (−T, T ):
f(x)˜ ∑∞m=0

(
am cos

(
πmx
T

)
+ bm sin

(
πmx
T

))
, where:

a0 = 1
2T

∫ T
−T f(x)dx

am = 1
T

∫ T
−T f(x) cos

(
πmx
T

)
b0 = 0
bm = 1

T

∫ T
−T f(x) sin

(
πmx
T

)
Cosine series: f defined on (0, T ): f(x)˜ ∑∞m=0 am cos

(
πmx
T

)
,

where:
a0 = 2

2T

∫ T
0 f(x)dx (not a typo)

am = 2
T

∫ T
0 f(x) cos

(
πmx
T

)
Sine series: f defined on (0, T ): f(x)˜ ∑∞m=0 bm sin

(
πmx
T

)
, where:

b0 = 0
bm = 2

T

∫ T
0 f(x) sin

(
πmx
T

)
Tabular integration: (IBP:

∫
f ′g = fg −

∫
fg′) To integrate∫

f(t)g(t)dt where f is a polynomial, make a table whose first row is

f(t) and g(t). Then differentiate f as many times until you get 0, and
antidifferentiate as many times until it aligns with the 0 for f . Then
multiply the diagonal terms and do + first term − second term etc.
Orthogonality formulas:

∫ T
−T cos

(
πmx
T

)
sin
(
πnx
T

)
dx = 0∫ T

−T cos
(
πmx
T

)
cos
(
πnx
T

)
dx = 0 if m 6= n∫ T

−T sin
(
πmx
T

)
sin
(
πnx
T

)
dx = 0 if m 6= n

Heat/Wave equations:
Step 1: Suppose u(x, t) = X(x)T (t), plug this into PDE, and group

X-terms and T -terms. Then X′′(x)
X(x)

= λ, so X′′ = λX . Then find a
differential equation for T . Note: If you have an α-term, put it with T .
Step 2: Deal with X′′ = λX . Use boundary conditions to find X(0)
etc. (if you have ∂u

∂x
, you might have X′(0) instead of X(0)).

Step 3: Case 1: λ = ω2, then X(x) = Aeωx +Be−ωx, then find
ω = 0, contradiction. Case 2: λ = 0, then X(x) = Ax+B, then eihter
find X(x) = 0 (contradiction), or find X(x) = A. Case 3: λ = −ω2,
then X(x) = A cos(ωx) +B sin(ωx). Then solve for ω, usually
ω = πm

T
. Also, if case 2 works, should find cos, if case 2 doesn’t work,

should find sin.
Finally, λ = −ω2, and X(x) = whatever you found in 2) w/o the
constant.
Step 4: Solve for T (t) with the λ you found. Remember that for the heat
equation: T ′ = λT ⇒ T (t) = Ãmeλt. And for the wave equation:
T ′′ = λT ⇒ T (t) = Ãm cos(ωt) + B̃m sin(ωt).
Step 5: Then u(x, t) =

∑∞
m=0 T (t)X(x) (if case 2 works),

u(x, t) =
∑∞
m=1 T (t)X(x) (if case 2 doesn’t work!)

Step 6: Use u(x, 0), and plug in t = 0. Then use Fourier cosine or sine
series or just ‘compare’, i.e. if u(x, 0) = 4 sin(2πx) + 3 sin(3πx),
then Ã2 = 4, Ã3 = 3, and Ãm = 0 if m 6= 2, 3.
Step 7: (only for wave equation): Use ∂u

∂t
u(x, 0): Differentiate Step 5

with respect to t and set t = 0. Then use Fourier cosine or series or
‘compare’
Nonhomogeneous heat equation:

∂u
∂t

= β ∂
2u
∂x2

+ P (x)

u(0, t) = U1, u(L, t) = U2
u(x, 0) = f(x)

Then u(x, t) = v(x) + w(x, t), where:
v(x) =[
U2 − U1 +

∫ L
0

∫ z
0

1
β
P (s)dsdz

]
x
L

+ U1 −
∫ x
0

∫ z
0

1
β
P (s)dsdz and

w(x, t) solves the hom. eqn:
∂w
∂t

= β ∂
2w
∂x2

w(0, t) = 0, w(L, t) = 0
u(x, 0) = f(x)− v(x)

D’Alembert’s formula: ONLY works for wave equation and
−∞ < x <∞:
u(x, t) = 1

2
(f(x+ αt) + f(x− αt)) + 1

2α

∫ x+αt
x−αt g(s)ds, where

utt = α2uxx, u(x, 0) = f(x), ∂u
∂t
u(x, 0) = g(x). The integral just

means ‘antidifferentiate and plug in’.

Laplace equation:
Same as for Heat/Wave, but T (t) becomes Y (y), and we get
Y ′′(y) = −λY (y). Also, instead of writing
Y (y) = Ãmeωy + B̃me−ωy , write
Y (y) = Ãm cosh(ωy) + B̃m sinh(ωy). Remember cosh(0) = 1,
sinh(0) = 0


